CE 329, Fall 2015

Assignment 22

Problem Statement

An acid, A, is to be hydrolyzed using an adiabatic CSTR according to the reaction $A+W \rightarrow P$, where W represents water and P, the product. When the reactor is first started up, it is filled with water at $90^{\circ} \mathrm{C}$. The acid is then fed at $10 \mathrm{~kg} / \mathrm{s}$ and water is fed at $30 \mathrm{~kg} / \mathrm{s}$; the feed temperature is $90^{\circ} \mathrm{C}$. The fluid volume of the CSTR is $0.5 \mathrm{~m}^{3}$. The rate expression is given in equation (1), with the rate coefficient given in equation (2) and the equilibrium constant in equation (3). The heat of reaction is $-86,000 \mathrm{~kJ} / \mathrm{kmol}$ at 298K. The fluid density is constant and equal to $992 \mathrm{~kg} / \mathrm{m}^{3}$. The heat capacities of A, W, and P are 2.9, 4.2 , and $3.2 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$, respectively, and may be taken to be independent of temperature. The molecular weight of A is 142 . Plot the outlet concentration of P and temperature from the time feed flow starts until the reactor appears to be approaching steady state.

$$
\begin{align*}
& r_{1}=k C_{A} C_{W}\left[1-\frac{C_{P}}{K C_{A} C_{W}}\right] \tag{1}\\
& k=\left(1.2 \times 10^{12} \mathrm{~m}^{3} \mathrm{kmol}^{-1} \mathrm{~s}^{-1}\right) \exp \left\{\frac{-13000 K}{T}\right\} \tag{2}\\
& K=\left(4.2 \times 10^{-15} \mathrm{~m}^{3} \mathrm{kmol}^{-1}\right) \exp \left\{\frac{11300 K}{T}\right\} \tag{3}
\end{align*}
$$

